3.15.17 \(\int \frac {a+b x}{\sqrt {c+d x}} \, dx\) [1417]

Optimal. Leaf size=40 \[ -\frac {2 (b c-a d) \sqrt {c+d x}}{d^2}+\frac {2 b (c+d x)^{3/2}}{3 d^2} \]

[Out]

2/3*b*(d*x+c)^(3/2)/d^2-2*(-a*d+b*c)*(d*x+c)^(1/2)/d^2

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 40, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {45} \begin {gather*} \frac {2 b (c+d x)^{3/2}}{3 d^2}-\frac {2 \sqrt {c+d x} (b c-a d)}{d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x)/Sqrt[c + d*x],x]

[Out]

(-2*(b*c - a*d)*Sqrt[c + d*x])/d^2 + (2*b*(c + d*x)^(3/2))/(3*d^2)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int \frac {a+b x}{\sqrt {c+d x}} \, dx &=\int \left (\frac {-b c+a d}{d \sqrt {c+d x}}+\frac {b \sqrt {c+d x}}{d}\right ) \, dx\\ &=-\frac {2 (b c-a d) \sqrt {c+d x}}{d^2}+\frac {2 b (c+d x)^{3/2}}{3 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 29, normalized size = 0.72 \begin {gather*} \frac {2 \sqrt {c+d x} (-2 b c+3 a d+b d x)}{3 d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)/Sqrt[c + d*x],x]

[Out]

(2*Sqrt[c + d*x]*(-2*b*c + 3*a*d + b*d*x))/(3*d^2)

________________________________________________________________________________________

Mathics [C] Result contains higher order function than in optimal. Order 9 vs. order 2 in optimal.
time = 4.62, size = 75, normalized size = 1.88 \begin {gather*} \text {Piecewise}\left [\left \{\left \{\frac {2 \left (3 a d \left (c+d x\right )-b \left (-3 c \left (2 c+d x\right )+3 c^2+\left (c+d x\right ) \left (5 c-d x\right )\right )\right )}{3 d^2 \sqrt {c+d x}},d\text {!=}0\right \}\right \},\frac {a x+\frac {b x^2}{2}}{\sqrt {c}}\right ] \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[(a + b*x)^1/(c + d*x)^(1/2),x]')

[Out]

Piecewise[{{2 (3 a d (c + d x) - b (-3 c (2 c + d x) + 3 c ^ 2 + (c + d x) (5 c - d x))) / (3 d ^ 2 Sqrt[c + d
 x]), d != 0}}, (a x + b x ^ 2 / 2) / Sqrt[c]]

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 38, normalized size = 0.95

method result size
gosper \(\frac {2 \sqrt {d x +c}\, \left (b d x +3 a d -2 b c \right )}{3 d^{2}}\) \(26\)
trager \(\frac {2 \sqrt {d x +c}\, \left (b d x +3 a d -2 b c \right )}{3 d^{2}}\) \(26\)
risch \(\frac {2 \sqrt {d x +c}\, \left (b d x +3 a d -2 b c \right )}{3 d^{2}}\) \(26\)
derivativedivides \(\frac {\frac {2 b \left (d x +c \right )^{\frac {3}{2}}}{3}+2 a d \sqrt {d x +c}-2 b c \sqrt {d x +c}}{d^{2}}\) \(38\)
default \(\frac {\frac {2 b \left (d x +c \right )^{\frac {3}{2}}}{3}+2 a d \sqrt {d x +c}-2 b c \sqrt {d x +c}}{d^{2}}\) \(38\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)/(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/d^2*(1/3*b*(d*x+c)^(3/2)+a*d*(d*x+c)^(1/2)-b*c*(d*x+c)^(1/2))

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 39, normalized size = 0.98 \begin {gather*} \frac {2 \, {\left (3 \, \sqrt {d x + c} a + \frac {{\left ({\left (d x + c\right )}^{\frac {3}{2}} - 3 \, \sqrt {d x + c} c\right )} b}{d}\right )}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

2/3*(3*sqrt(d*x + c)*a + ((d*x + c)^(3/2) - 3*sqrt(d*x + c)*c)*b/d)/d

________________________________________________________________________________________

Fricas [A]
time = 0.29, size = 25, normalized size = 0.62 \begin {gather*} \frac {2 \, {\left (b d x - 2 \, b c + 3 \, a d\right )} \sqrt {d x + c}}{3 \, d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

2/3*(b*d*x - 2*b*c + 3*a*d)*sqrt(d*x + c)/d^2

________________________________________________________________________________________

Sympy [A]
time = 2.11, size = 121, normalized size = 3.02 \begin {gather*} \begin {cases} \frac {- \frac {2 a c}{\sqrt {c + d x}} - 2 a \left (- \frac {c}{\sqrt {c + d x}} - \sqrt {c + d x}\right ) - \frac {2 b c \left (- \frac {c}{\sqrt {c + d x}} - \sqrt {c + d x}\right )}{d} - \frac {2 b \left (\frac {c^{2}}{\sqrt {c + d x}} + 2 c \sqrt {c + d x} - \frac {\left (c + d x\right )^{\frac {3}{2}}}{3}\right )}{d}}{d} & \text {for}\: d \neq 0 \\\frac {a x + \frac {b x^{2}}{2}}{\sqrt {c}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(d*x+c)**(1/2),x)

[Out]

Piecewise(((-2*a*c/sqrt(c + d*x) - 2*a*(-c/sqrt(c + d*x) - sqrt(c + d*x)) - 2*b*c*(-c/sqrt(c + d*x) - sqrt(c +
 d*x))/d - 2*b*(c**2/sqrt(c + d*x) + 2*c*sqrt(c + d*x) - (c + d*x)**(3/2)/3)/d)/d, Ne(d, 0)), ((a*x + b*x**2/2
)/sqrt(c), True))

________________________________________________________________________________________

Giac [A]
time = 0.00, size = 51, normalized size = 1.28 \begin {gather*} \frac {\frac {2 b \left (\frac {1}{3} \sqrt {c+d x} \left (c+d x\right )-c \sqrt {c+d x}\right )}{d}+2 a \sqrt {c+d x}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(d*x+c)^(1/2),x)

[Out]

2/3*(3*sqrt(d*x + c)*a + ((d*x + c)^(3/2) - 3*sqrt(d*x + c)*c)*b/d)/d

________________________________________________________________________________________

Mupad [B]
time = 0.05, size = 28, normalized size = 0.70 \begin {gather*} \frac {2\,\sqrt {c+d\,x}\,\left (3\,a\,d-3\,b\,c+b\,\left (c+d\,x\right )\right )}{3\,d^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)/(c + d*x)^(1/2),x)

[Out]

(2*(c + d*x)^(1/2)*(3*a*d - 3*b*c + b*(c + d*x)))/(3*d^2)

________________________________________________________________________________________